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Continuous Distribution

A random variable Y is called continuous if it can assume any value in an
interval of real numbers. Every continuous random variable we will discuss
in this course has a probability density function(pdf), denoted by fY (y).
This function has the followling characteristics:

1 fY (y) ≥ 0, that is fY (y) is nonnegative.

2 The area under any pdf is equal to 1, that is,∫ ∞
−∞

fY (y)dy = 1

.

Remarks: Assigning probabilities to events involving continuous random
variables is different than in discrete models. We do not assign positive
probability to specific values(e.g., Y = 3) like we did with discrete
random variables. Instead, we assign positive probability to events which
are intervals(e.g., 1 < Y < 3).
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Continuous Distribution

The cumulative distribution function(cdf) of Y is given by

FY (y) = P(Y ≤ y) =

∫ y

−∞
fY (t)dt

Especially, if a and b are specific values of interest(a ≤ b), then

P(a ≤ Y ≤ b) =

∫ b

a
fY (t)dt = FY (b)− FY (a)

Remarks: If a is a specific value, then P(Y = a) = 0. In other words, in
continuous probability models, specific points are assigned zero probability.
An immediate consequence of this is that if Y is continuous,

P(a ≤ Y ≤ b) = P(a ≤ Y < b) = P(a < Y ≤ b) = p(a < Y < b)

and each is equal to ∫ b

a
fY (t)dt
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Continuous Distribution

Let Y be a continuous r.v. with pdf fY (y) and g is a real-valued function.
Then g(Y ) is a random variable. The expected value of Y is given by

µ = E (Y ) =

∫ ∞
−∞

yfY (y)dy

The expected value of g(Y ) is given by

E (g(Y )) =

∫ ∞
−∞

g(y)fY (y)dy

The variance of Y is given by

σ2 = var(Y ) = E [(Y − µ)2] =

∫ ∞
−∞

(y − µ)2fY (y)dy = E (Y 2)− [E (Y )]2

The standard deviation of Y is given by

σ =
√
σ2 =

√
var(Y )

Chong Ma (Statistics, USC) STAT 509 Spring 2017 February 1, 2017 5 / 27



Continuous Distribution

The pth quantile of the distribution of Y , also called 100pth percentile,
denoted by φp, solves

FY (φp) = P(Y ≤ φp) =

∫ φp

−∞
fY (y)dy = p

Specially, the median of Y is the p = 0.5 quantile. That is, the median
φ0.5 solves

FY (φ0.5) = P(Y ≤ φ0.5) =

∫ φ0.5

−∞
fY (y)dy = 0.5
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Continuous Distribution

Example Let Y denote the diameter of a hole drilled in a sheet metal
component. The target diameter is 12.5 mm and can never be lower than
this. However, minor random disturbances to the drilling process always
result in larger diameters. Suppose that Y is modeled using the pdf

fY (y) =

{
20e−20(y−12.5), y > 12.5

0, otherwise

The cdf of Y is given by

FY (y) =

{
0, y ≤ 12.5

1− e−20(y−12.5), y > 12.5

The expected value of Y is

µ = E (Y ) =

∫ ∞
12.5

yfY (y)dy =

∫ ∞
12.5

20ye−20(y−12.5)dy = 12.55
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Continous Distribution

Figure 1: The pdf and cdf of a prototype continuous distribution.
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Continuous Distribution

The variance of Y is

σ2 = Var(Y ) =

∫ ∞
12.5

(y − µ)2fY (y)dy

=

∫ ∞
12.5

(20− 12.55)2ye−20(y−12.5)dy = 0.0025

The median diameter φ0.5 is obtained by solving the following equation

FY (φ0.5) = 1− e−20(φ0.5−12.5) = 0.5

We can use the uniroot R function to quickly find the root of the
equation. We get φ0.5 ≈ 12.535, that is, 50% of the diameters will be less
than 12.535mm.
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Exponential Distribution

A random variable Y is said to have an exponential distribution with
parameter λ > 0 if its pdf is given by

fY (y) =

{
λe−λy , y > 0

0, otherwise

We denote by Y ∼ exponential(λ). Its cdf has closed form, that is

FY (y) =

{
0, y ≤ 0

1− e−λy , y > 0

The expected value and variance of Y ∼ exponential(λ)

E (Y ) =
1

λ

Var(Y ) =
1

λ2
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Exponential Distribution

Figure 2: The pdf and cdf of the exponential distribution with λ = 1/2, 1, 2.
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Exponential Distribution

Suppose Y ∼ exponential(λ), let r and s be positive constants. There are
two important characteristics for exponential distribution.

Memoryless Property: P(Y > r + s|Y > r) = P(Y > s). If Y measures
time(e.g., time to failure, etc.), then the memoryless property says that
the distribution of additional lifetime(s time units beyond time r) is the
same as the original distribution of the lifetime.

Poisson Relationship: Suppose that we are observing “occurrences” over
time according to a Poisson distribution with rate r. Define the random
variable

Y = the time until the first occurrence

Then, Y ∼ exponential(λ).
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Exponential Distribution

Example Experience with fans used in diesel engines has suggested that
the exponential distribution provides a good model for time until
failure(i.e., lifetime). Suppose that the lifetime of a fan, denoted by Y
(measured in 10000s of hours), follows an exponential distribution with
λ = 0.4.

(a) What is the probability that a fan lasts longer than 30,000 hours?

P(Y > 3) = 1− P(Y ≤ 3) = 1− FY (3)

= 1− (1− e−0.4(3)) = e−1.2 ≈ 0.301

(b) What is the probability that a fan will last between 20,000 and 50,000?

P(2 < Y < 5) =

∫ 5

2
0.4e−0.4ydy = 0.4(− 1

0.4
e−0.4y |52)

= −e−0.4y |52 = e−0.8 − e−2 ≈ 0.314
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Exponential Distribution

Example Suppose customers arrive at a check-out according to a Poisson
process with mean λ = 12 per hour.

(a) What is the probability that we will have to wait longer than 10
minutes to see the first customer? (10 minutes = 1

6 of an hour) The
time until the first arrival, say Y , follows an exponential distribution
with λ = 12. The cdf of Y is FY (y) = 1− e−12y for y > 0. The
desired probability is

P(Y > 1/6) = 1− P(Y ≤ 1/6) = 1− FY (1/6)

= 1− (1− e−12(1/6)) = e−2 ≈ 0.135.

(b) 90% of all first-customer waiting times will be less than what value?
We want φ0.9, the 90th percentile of the distribution of Y . Set

FY (φ0.9) = 1− e−12φ0.9 = 0.9

Solving it, we have φ0.9 ≈ 0.192(12 minutes). That is, the 90 percent
of all first-customer waiting times will be less than 12 minutes.
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Gamma Distribution

A random variable Y is said to have a gamma distribution with
parameters α > 0 and λ > 0 for its pdf is given by

fY (y) =

{
λα

Γ(α)y
α−1e−λy , y > 0

0, otherwise

Where Gamma function Γ(α) is a real function defined by

Γ(α) =

∫ ∞
0

yα−1e−ydy

for all α > 0. The gamma function also satisfies the recursive relationship

Γα = (α− 1)Γ(α− 1)

Especially, if α is an integer, then

Γ(α) = (α− 1)!
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Gamma Distribution

Remarks

Y ∼ gamma(α, λ), where α is shape parameter and λ is rate
parameter.

Gamma distribution is more flexible than the exponential for modeling
positive random variables. Especially, when α = 1, the gamma
distribution reduces to the exponential(λ) distribution.

The cdf of a gamma random variable does not exist in closed form.
Therefore, probabilities involving gamma random variables and
gamma quantiles must be computed numerically.

If Y ∼ gamma(α, λ), then

E (Y ) =
α

λ

Var(Y ) =
α

λ2
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Gamma Distribution

Figure 3: The pdf and cdf of the gamma distribution with γ = 1, 2, 5, 9 and
λ = 0.5, 1, 2, 2, respectively.

Chong Ma (Statistics, USC) STAT 509 Spring 2017 February 1, 2017 19 / 27



Gamma Distribution

When a certain transistor is subjected to an accelerated life test, the
lifetime Y (in weeks) is modeled by a gamma distribution with α = 4 and
λ = 1/6.

(a) Find the probability that a transistor will last at least 50 weeks?

P(Y ≥ 50) = 1− P(Y < 50)

= 1− pgamma(50, 4, 1/6)

= 0.034

(b) Find the probability that a transistor will last between 12 and 24
weeks?

P(12 < Y < 24) = FY (24)− FY (12)

= pgamma(24, 4, 1/6)− pgamma(12, 4, 1/6)

= 0.424
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Gamma Distribution

(c) 20% of the transistor lifetime will be below which time? (That is,
what is the 20th percentile of the lifetime distribution?)

FY (φ0.2) = P(Y ≤ φ0.2) =

∫ φ0.2

−∞
fY (y)dy = 0.2

Therefore, φ0.2 = 13.78(by using R code qgamma(0.2,4,1/6).)

Poisson Relationship: Suppose that we are observing “occurrences” over
time according to a Poisson distribution with rate λ. Define the random
variable

Y = the time until the αth occurrence

Then, Y ∼ gamma(α, λ)
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Normal Distribution

A random variable Y is said to have a normal distribution if its pdf is
given by

fY (y) =
1√
2πσ

e−(y−µ)2/2σ2
, −∞ < y <∞

Denoted by Y ∼ N(µ, σ2), also known as the Gaussian distribution. The
mean and variance of Y are accordingly

E (Y ) = µ

Var(Y ) = σ2

CDF: The cdf of a normal random variable does not exist in closed form.
Probability involving normal random variables and normal quantiles can be
computed numerically.
Remark The normal distribution serves as a very good model for a wide
range of measurements: e.g., reaction times, fill amount, part dimensions,
weights/heights, measures of intelligence/test scores, economic indexes,
etc.
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Normal Distribution

Especially, when µ = 0, σ = 1, Y ∼ N(µ, σ2) reduces to a standard
normal random variable Z ∼ N(0, 1) which has the pdf

fZ (z) =
1√
2π

e−z
2/2, −∞ < z <∞

Mathematically, if Y ∼ N(µ, σ2), then

Z =
Y − µ
σ

∼ N(0, 1)

Empirical Rule: For any N(µ, σ2) distribution,

about 68% of the distribution is between µ− σ and µ+ σ.

about 95% of the distribution is between µ− 2σ and µ+ 2σ.

about 99.7% of the distribution is between µ− 3σ and µ+ 3σ.
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Normal Distribution

Figure 4: The pdf and cdf of the normal distribution with µ = −2, 0, 1 and
σ = 2, 1, 3, respectively.
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Normal Distribution

Example The time it takes for a deriver to react to the break lights on a
decelerating vehicle is critical in helping to avoid rear-end collisions. For a
population of drivers, suppose that

Y = the reaction time to break during in-traffic driving(in seconds)

follow a normal distribution with mean µ = 1.5 and variance σ2 = 0.16.

(a) What is the probability that reaction time is less than 1 second?

P(Y < 1) = FY (1) = pnorm(1, 1.5, sqrt(0.16)) = 0.106

(b) What is the probability that reaction time is between 1.1 and 2.5
seconds?

P(1.1 < Y < 2.5) = FY (2.5)− FY (1.1)

= pnorm(2.5, 1.5, 0.4)− pnorm(1.1, 1.5, 0.4)

= 0.106
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Related R code

Model(Y ∼) fY (y) FY (y) = P(Y ≤ y) φp

exponential(λ) dexp(y,λ) pexp(y,λ) qexp(y,λ)

gamma(α, λ) dgamma(y,α,λ) pgamma(y,α,λ) qgamma(y,α,λ)

N(µ, σ2) dnorm(y,µ,σ) pnorm(y,µ,σ) qnorm(y,µ,σ)

Table 1: R code of CDF and PFD for Y ∼ exponential(λ), Y ∼ gamma(α, λ),
and Y ∼ N(µ, σ2).
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